Cloud computing made easy
in

Joblib

Alexandre Abadie

F 4

: informatics g mathematics

Outline

An overview of Joblib
Joblib for cloud computing

Future work

Joblib in a word

A Python package to make your algorithms run faster

Joblib in a word

A Python package to make your algorithms run faster

http://joblib.readthedocs.io

http://joblib.readthedocs.io/

The ecosystem

« 54 different contributors since the beginning in 2008

Contributors per month

The ecosystem

« 54 different contributors since the beginning in 2008

Contributors per month

« Joblib is the computing backend used by Scikit-Learn

The ecosystem

« 54 different contributors since the beginning in 2008

Contributors per month

« Joblib is the computing backend used by Scikit-Learn

e Stable and mature code base

https://github.com/joblib/joblib

https://github.com/joblib/joblib

Why Joblib?

Why Joblib?

» Because we want to make use of all available computing resources

Why Joblib?

e Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

Why Joblib?

» Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

e Because we work on large datasets

Why Joblib?

e Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

« Because we work on large datasets

= Data that just fits in RAM

Why Joblib?

» Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

e Because we work on large datasets

= Data that just fits in RAM

« Because we want the internal algorithm logic to remain unchanged

Why Joblib?

e Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

« Because we work on large datasets

= Data that just fits in RAM

» Because we want the internal algorithm logic to remain unchanged

= Adapted to embarrassingly parallel problems

Why Joblib?

Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

Because we work on large datasets

= Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

= Adapted to embarrassingly parallel problems

Because we love simple APIs

Why Joblib?

Because we want to make use of all available computing resources

= And ensure algorithms run as fast as possible

Because we work on large datasets

= Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

= Adapted to embarrassingly parallel problems

Because we love simple APIs

= And parallel programming is not user friendly in general

How?

e Embarrassingly Parallel computing helper

= make parallel computing easy

How?

e Embarrassingly Parallel computing helper

= make parallel computing easy

 Efficient disk caching to avoid recomputation

= computation resource friendly

How?

e Embarrassingly Parallel computing helper

= make parallel computing easy

 Efficient disk caching to avoid recomputation

= computation resource friendly

e Fast I/0 persistence

= |limit cache access time

How?

Embarrassingly Parallel computing helper

= make parallel computing easy

Efficient disk caching to avoid recomputation

= computation resource friendly

Fast I/0 persistence

= |limit cache access time

No dependencies, optimized for numpy arrays

= simple installation and integration in other projects

Overview

Python script
(Parallel) Joblib (Memory)

A

\

Parallel backend workers Disk caching

Parallel helper

>>> from joblib import Parallel, delayed
>>> from math import sqrt

>>> Parallel(n_jobs=3, verbose=50)(delayed(sqrt)(i**2) for 1 in range(6))
[Parallel(n_jobs=3)]: Done 1 tasks | elapsed: 0.0s
]

[Parallel(n_jobs=3)]: Done 6 out of 6 | elapsed: 0.0s finished
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

Dispatch queue

T
 Caller
~— NN

SDCOCO

Collect queue Workers

Parallel helper

>>> from joblib import Parallel, delayed
>>> from math import sqrt

>>> Parallel(n_jobs=3, verbose=50)(delayed(sqrt)(i**2) for 1 in range(6))
[Parallel(n_jobs=3)]: Done 1 tasks | elapsed: 0.0s
]

[Parallel(n_jobs=3)]: Done 6 out of 6 | elapsed: 0.0s finished
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

Dispatch queue

T
 Caller
~— NN

SDCOCO

Collect queue Workers

= API can be extended with external backends

Parallel backends

e Single machine backends: works on a Laptop

= threading, multiprocessing and soon Loky

Parallel backends

e Single machine backends: works on a Laptop
= threading, multiprocessing and soon Loky
e Multi machine backends: available as optional extensions

= distributed, ipyparallel, CMFActivity, Hadoop Yarn

Parallel backends

e Single machine backends: works on a Laptop
= threading, multiprocessing and soon Loky
e Multi machine backends: available as optional extensions

= distributed, ipyparallel, CMFActivity, Hadoop Yarn

>>> from distributed.joblib import DistributedBackend
>>> from joblib import (Parallel, delayed,

>>> register_parallel_backend, parallel_backend)

>>> register_parallel_backend('distributed', DistributedBackend)
>>> with parallel_backend('distributed', scheduler_host='dscheduler:8786"'):
>>> Parallel(n_jobs=3)(delayed(sqrt)(i**2) for 1 in range(6))
[...]

Parallel backends

e Single machine backends: works on a Laptop
= threading, multiprocessing and soon Loky
e Multi machine backends: available as optional extensions

= distributed, ipyparallel, CMFActivity, Hadoop Yarn

>>> from distributed.joblib import DistributedBackend
>>> from joblib import (Parallel, delayed,

>>> register_parallel_backend, parallel_backend)

>>> register_parallel_backend('distributed', DistributedBackend)
>>> with parallel_backend('distributed', scheduler_host='dscheduler:8786"'):
>>> Parallel(n_jobs=3)(delayed(sqrt)(i**2) for 1 in range(6))
[...]

 Future: new backends for Celery, Spark

Caching on disk

« Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np

>>> @ = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir='/tmp/joblib")
>>> square = mem.cache(np.square)

Caching on disk

« Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np
>>> @ = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir="'/tmp/joblib")
>>> square = mem.cache(np.square)

>>> b = square(a)

[Memory] Calling square...
square(array([[0., 0., 1.],
[1., 1., 1.1,

[4., 2., 1.11))

>>> ¢ = square(a) # no recomputation
array([[0., 0., 1.],
[...]

square - 0...s, 0.0min

Caching on disk

« Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np
>>> @ = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir="'/tmp/joblib")
>>> square = mem.cache(np.square)

>>> b = square(a)

[Memory] Calling square...
square(array([[0., 0., 1.],
[1., 1., 1.1,

[4., 2., 1.11))

square - 0...s, 0.0min

>>> ¢ = square(a) # no recomputation
array([[0., 0., 1.],
[...]

 Least Recently Used (LRU) cache replacement policy

Persistence

« Convert/create an arbitrary object into/from a string of bytes

« Streamable persistence to/from file or socket objects

>>> import numpy as np

>>> import joblib

>>> obj = [('a', [1, 2, 3]), ('b", np.arange(10))]

>>> joblib.dump(obj, '/tmp/test.pkl')

['/tmp/test.pkl']

>>> with open('/tmp/test.pkl', 'rb') as f:

>>> joblib.load(f)

[('a', [1, 2, 3]), ('b', array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9]))]

Persistence

« Convert/create an arbitrary object into/from a string of bytes

« Streamable persistence to/from file or socket objects

>>> import numpy as np

>>> import joblib

>>> obj = [('a', [1, 2, 3]), ('b", np.arange(10))]

>>> joblib.dump(obj, '/tmp/test.pkl')

['/tmp/test.pkl']

>>> with open('/tmp/test.pkl', 'rb') as f:

>>> joblib.load(f)

[('a', [1, 2, 3]), ('b', array([o, 1, 2, 3, 4, 5, 6, 7, 8, 9]))]

» Use compression for fast I/0:
support for zlib, gz, bz2, xz and Izma compressors

>>> joblib.dump(obj, '/tmp/test.pkl.gz', compress=True, cache size=0)
['/tmp/test.pkl.gz']
>>> joblib.load('/tmp/test.pkl.gz"')

Outline

Joblib in a word

= Joblib for cloud computing

Future work

The Cloud trend

» Lots of Cloud providers on the market:

The Cloud trend

» Lots of Cloud providers on the market:

amazon EC2

 Existing solutions for processing Big Data:

e N

The Cloud trend

» Lots of Cloud providers on the market:

amazon EC2

 Existing solutions for processing Big Data:

<<

 Existing container orchestration solutions: Docker SWARM, Kubernetes

e N

The Cloud trend

» Lots of Cloud providers on the market:

amazon EC2

 Existing solutions for processing Big Data:

<<

 Existing container orchestration solutions: Docker SWARM, Kubernetes

e N

kubernetes

How can Joblib be used with them?

The general idea

f --------
Local < S Pl
‘. Developper p
\ L A
(\&
Interactive Frontend
(SSH, IPython Notebook)
(Parallel) Joblib (Memory)
; A A
Local V! V!
R0 EBE
N
EE EEmn E 4"; — _
Fast I/O _ _
I
\ —

Parallel backend workers Caching storage backend

Use pluggable multi-machine parallel backends

Principle: configure your backend and wrap the calls to Parallel

>>> import time

>>> import ipyparallel as 1ipp

>>> from ipyparallel.joblib import register as register_joblib
>>> from joblib import parallel backend, Parallel, delayed

Setup ipyparallel backend
>>> register_joblib()
>>> dview = ipp.Client()[:]

Start the job
>>> with parallel_backend("ipyparallel", view=dview):
>>> Parallel(n_jobs=20, verbose=50)(delayed(time.sleep)(1) for 1 in range(10))

Use pluggable multi-machine parallel backends

Principle: configure your backend and wrap the calls to Parallel

>>> import time

>>> import ipyparallel as 1ipp

>>> from ipyparallel.joblib import register as register_joblib
>>> from joblib import parallel backend, Parallel, delayed

Setup ipyparallel backend
>>> register_joblib()
>>> dview = ipp.Client()[:]

Start the job
>>> with parallel_backend("ipyparallel", view=dview):
>>> Parallel(n_jobs=20, verbose=50)(delayed(time.sleep)(1) for 1 in range(10))

Complete examples exist for:

» Dask distributed: https://github.com/ogrisel/docker-distributed

» Hadoop Yarn: https://github.com/joblib/joblib-hadoop

https://github.com/ogrisel/docker-distributed
https://github.com/joblib/joblib-hadoop

Use pluggable store backends

« Extends Memory API with other store providers

» Not available upstream yet:
=> PR opened at https://github.com/joblib/joblib/pull/397

https://github.com/joblib/joblib/pull/397

Use pluggable store backends

« Extends Memory API with other store providers

» Not available upstream yet:
=> PR opened at https://github.com/joblib/joblib/pull/397

>>> import numpy as np
>>> from joblib import Memory
>>> from joblibhadoop.hdfs import register_hdfs_store_backend

Register HDFS store backend provider

>>> register_hdfs_store_backend()

Persist data in hdfs://namenode:9000/user/john/cache/joblib

>>> mem = Memory(location='cache', backend='hdfs',

>>> host="'namenode', port=9000, user='john', compress=True)
multiply = mem.cache(np.multiply)

https://github.com/joblib/joblib/pull/397

Use pluggable store backends

« Extends Memory API with other store providers

» Not available upstream yet:
=> PR opened at https://github.com/joblib/joblib/pull/397

>>> import numpy as np
>>> from joblib import Memory
>>> from joblibhadoop.hdfs import register_hdfs_store_backend

Register HDFS store backend provider

>>> register_hdfs_store_backend()

Persist data in hdfs://namenode:9000/user/john/cache/joblib

>>> mem = Memory(location='cache', backend='hdfs',

>>> host="'namenode', port=9000, user='john', compress=True)
multiply = mem.cache(np.multiply)

Store backends available:

e Amazon S3: https://github.com/aabadie/joblib-s3

« Hadoop HDFS: https://github.com/joblib/joblib-hadoop

https://github.com/joblib/joblib/pull/397
https://github.com/aabadie/joblib-s3
https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib

 joblib-hadoop package: https://github.com/joblib/joblib-hadoop

https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib

 joblib-hadoop package: https://github.com/joblib/joblib-hadoop

 Provides docker containers helpers for developing and testing

Docker Joblib
Compose Manager § Hadoop

~‘\

£

Yarn Node

A

Developper Host

https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib

 joblib-hadoop package: https://github.com/joblib/joblib-hadoop

 Provides docker containers helpers for developing and testing

Docker Joblib
Compose Manager § Hadoop

~‘\

£

Yarn Node

A

Developper Host

=> no need for a production Hadoop cluster
= make developer life easier: CI on Travis is possible

= local repository on host is shared with Joblib-hadoop-node container

https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib

 joblib-hadoop package: https://github.com/joblib/joblib-hadoop

 Provides docker containers helpers for developing and testing

Docker Joblib
Compose Manager § Hadoop
Yarn Node

A

Developper Host

Joblib-hadoop
is currently tested

=> no need for a production Hadoop cluster at

~‘\

£

= make developer life easier: CI on Travis is possible criteo

= local repository on host is shared with Joblib-hadoop-node container

https://github.com/joblib/joblib-hadoop

Outline

Joblib in a word

Joblib for cloud computing

=>Future work and conclusion

Future work

e In-memory object caching

= Should save RAM during a parallel job

Future work

e In-memory object caching

= Should save RAM during a parallel job

» Allow overriding of parallel backends

= See PR: https://github.com/joblib/joblib/pull/524

= Seamless distributed computing in scikit-learn

https://github.com/joblib/joblib/pull/524

Future work

e In-memory object caching

= Should save RAM during a parallel job

» Allow overriding of parallel backends

= See PR: https://github.com/joblib/joblib/pull/524

= Seamless distributed computing in scikit-learn

« Replace multiprocessing parallel backend with Loky

= See PR: https://github.com/joblib/joblib/pull/516

https://github.com/joblib/joblib/pull/524
https://github.com/joblib/joblib/pull/516

Future work

In-memory object caching

= Should save RAM during a parallel job

Allow overriding of parallel backends

= See PR: https://github.com/joblib/joblib/pull/524

= Seamless distributed computing in scikit-learn

Replace multiprocessing parallel backend with Loky

= See PR: https://github.com/joblib/joblib/pull/516

Extend Cloud providers support

= Using Apache libcloud: give access to a lot more Cloud providers

https://github.com/joblib/joblib/pull/524
https://github.com/joblib/joblib/pull/516

Conclusion

Conclusion

 Parallel helper is adapted to embarassingly parallel problems

Conclusion

 Parallel helper is adapted to embarassingly parallel problems

» Already a lot of parallel backends available

= threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Conclusion

 Parallel helper is adapted to embarassingly parallel problems

» Already a lot of parallel backends available

= threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

 Use caching techniques to avoid recomputation

Conclusion

Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

= threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Use caching techniques to avoid recomputation

Extra Store backends available = HDFS (Hadoop) and AWS S3

Conclusion

Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

= threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Use caching techniques to avoid recomputation

Extra Store backends available = HDFS (Hadoop) and AWS S3

Use Joblib either on your laptop or in a Cloud with very few code changes

Thanks!

https://sed.saclay.inria.fr/
https://github.com/lesteve
https://github.com/GaelVaroquaux
https://github.com/ogrisel
http://www.scikit-learn.org/
http://www.criteo.com/
http://www.inria.fr/

