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The ecosystem
54 different contributors since the beginning in 2008

Contributors per month

Joblib is the computing backend used by Scikit-Learn  

Stable and mature code base  

https://github.com/joblib/joblib
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Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

⇒ Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

⇒ Adapted to embarrassingly parallel problems

Because we love simple APIs

⇒ And parallel programming is not user friendly in general
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How?
Embarrassingly Parallel computing helper

⇒ make parallel computing easy

Efficient disk caching to avoid recomputation

⇒ computation resource friendly

Fast I/O persistence

⇒ limit cache access time

No dependencies, optimized for numpy arrays

⇒ simple installation and integration in other projects



Overview



Parallel helper
>>> from joblib import Parallel, delayed
>>> from math import sqrt

>>> Parallel(n_jobs=3, verbose=50)(delayed(sqrt)(i**2) for i in range(6))
[Parallel(n_jobs=3)]: Done   1 tasks      | elapsed:    0.0s
[...]
[Parallel(n_jobs=3)]: Done   6 out of   6 | elapsed:    0.0s finished
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
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⇒ API can be extended with external backends
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Parallel backends
Single machine backends: works on a Laptop

⇒ threading, multiprocessing and soon Loky

Multi machine backends: available as optional extensions

⇒ distributed, ipyparallel, CMFActivity, Hadoop Yarn

>>> from distributed.joblib import DistributedBackend
>>> from joblib import (Parallel, delayed,
>>>                      register_parallel_backend, parallel_backend)

>>> register_parallel_backend('distributed', DistributedBackend)
>>> with parallel_backend('distributed', scheduler_host='dscheduler:8786'):
>>>     Parallel(n_jobs=3)(delayed(sqrt)(i**2) for i in range(6))
[...]

Future: new backends for Celery, Spark
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Caching on disk
Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np
>>> a = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir='/tmp/joblib')
>>> square = mem.cache(np.square)

>>> b = square(a)
________________________________________________________________________________
[Memory] Calling square...
square(array([[ 0.,  0.,  1.],
       [ 1.,  1.,  1.],
       [ 4.,  2.,  1.]]))
___________________________________________________________square - 0...s, 0.0min

>>> c = square(a) # no recomputation
array([[ 0.,  0.,  1.],
[...]

Least Recently Used (LRU) cache replacement policy



Persistence
Convert/create an arbitrary object into/from a string of bytes

Streamable persistence to/from file or socket objects

>>> import numpy as np
>>> import joblib
>>> obj = [('a', [1, 2, 3]), ('b', np.arange(10))]
>>> joblib.dump(obj, '/tmp/test.pkl')
['/tmp/test.pkl']
>>> with open('/tmp/test.pkl', 'rb') as f:
>>>     joblib.load(f)
[('a', [1, 2, 3]), ('b', array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))]



Persistence
Convert/create an arbitrary object into/from a string of bytes

Streamable persistence to/from file or socket objects

>>> import numpy as np
>>> import joblib
>>> obj = [('a', [1, 2, 3]), ('b', np.arange(10))]
>>> joblib.dump(obj, '/tmp/test.pkl')
['/tmp/test.pkl']
>>> with open('/tmp/test.pkl', 'rb') as f:
>>>     joblib.load(f)
[('a', [1, 2, 3]), ('b', array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))]

Use compression for fast I/O: 
   support for zlib, gz, bz2, xz and lzma compressors

>>> joblib.dump(obj, '/tmp/test.pkl.gz', compress=True, cache_size=0)
['/tmp/test.pkl.gz']
>>> joblib.load('/tmp/test.pkl.gz')
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Existing solutions for processing Big Data:
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How can Joblib be used with them?



The general idea



Use pluggable multi-machine parallel backends
Principle: configure your backend and wrap the calls to Parallel

>>> import time
>>> import ipyparallel as ipp
>>> from ipyparallel.joblib import register as register_joblib
>>> from joblib import parallel_backend, Parallel, delayed

# Setup ipyparallel backend
>>> register_joblib()
>>> dview = ipp.Client()[:]

# Start the job
>>> with parallel_backend("ipyparallel", view=dview):
>>>     Parallel(n_jobs=20, verbose=50)(delayed(time.sleep)(1) for i in range(10))



Use pluggable multi-machine parallel backends
Principle: configure your backend and wrap the calls to Parallel

>>> import time
>>> import ipyparallel as ipp
>>> from ipyparallel.joblib import register as register_joblib
>>> from joblib import parallel_backend, Parallel, delayed

# Setup ipyparallel backend
>>> register_joblib()
>>> dview = ipp.Client()[:]

# Start the job
>>> with parallel_backend("ipyparallel", view=dview):
>>>     Parallel(n_jobs=20, verbose=50)(delayed(time.sleep)(1) for i in range(10))

Complete examples exist for:

Dask distributed: https://github.com/ogrisel/docker-distributed

Hadoop Yarn: https://github.com/joblib/joblib-hadoop

https://github.com/ogrisel/docker-distributed
https://github.com/joblib/joblib-hadoop
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Use pluggable store backends
Extends Memory API with other store providers

Not available upstream yet: 
⇒ PR opened at https://github.com/joblib/joblib/pull/397

>>> import numpy as np
>>> from joblib import Memory
>>> from joblibhadoop.hdfs import register_hdfs_store_backend

# Register HDFS store backend provider
>>> register_hdfs_store_backend()
# Persist data in hdfs://namenode:9000/user/john/cache/joblib
>>> mem = Memory(location='cache', backend='hdfs',
>>>              host='namenode', port=9000, user='john', compress=True)
multiply = mem.cache(np.multiply)

Store backends available:

Amazon S3: https://github.com/aabadie/joblib-s3

Hadoop HDFS: https://github.com/joblib/joblib-hadoop

https://github.com/joblib/joblib/pull/397
https://github.com/aabadie/joblib-s3
https://github.com/joblib/joblib-hadoop
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Future work
In-memory object caching

⇒ Should save RAM during a parallel job

Allow overriding of parallel backends

⇒ See PR: https://github.com/joblib/joblib/pull/524 

⇒ Seamless distributed computing in scikit-learn

Replace multiprocessing parallel backend with Loky

⇒ See PR: https://github.com/joblib/joblib/pull/516

Extend Cloud providers support

⇒ Using Apache libcloud: give access to a lot more Cloud providers

https://github.com/joblib/joblib/pull/524
https://github.com/joblib/joblib/pull/516
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Conclusion
Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

⇒ threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Use caching techniques to avoid recomputation

Extra Store backends available ⇒ HDFS (Hadoop) and AWS S3

Use Joblib either on your laptop or in a Cloud with very few code changes



Thanks!

              

            

https://sed.saclay.inria.fr/
https://github.com/lesteve
https://github.com/GaelVaroquaux
https://github.com/ogrisel
http://www.scikit-learn.org/
http://www.criteo.com/
http://www.inria.fr/

