
Cloud computing made easy

in

Joblib

Alexandre Abadie

Outline

An overview of Joblib

Joblib for cloud computing

Future work

Joblib in a word

A Python package to make your algorithms run faster

Joblib in a word

A Python package to make your algorithms run faster

http://joblib.readthedocs.io

http://joblib.readthedocs.io/

The ecosystem
54 different contributors since the beginning in 2008

Contributors per month

The ecosystem
54 different contributors since the beginning in 2008

Contributors per month

Joblib is the computing backend used by Scikit-Learn

The ecosystem
54 different contributors since the beginning in 2008

Contributors per month

Joblib is the computing backend used by Scikit-Learn

Stable and mature code base

https://github.com/joblib/joblib

https://github.com/joblib/joblib

Why Joblib?

Why Joblib?
Because we want to make use of all available computing resources

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

⇒ Data that just fits in RAM

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

⇒ Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

⇒ Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

⇒ Adapted to embarrassingly parallel problems

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

⇒ Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

⇒ Adapted to embarrassingly parallel problems

Because we love simple APIs

Why Joblib?
Because we want to make use of all available computing resources

⇒ And ensure algorithms run as fast as possible

Because we work on large datasets

⇒ Data that just fits in RAM

Because we want the internal algorithm logic to remain unchanged

⇒ Adapted to embarrassingly parallel problems

Because we love simple APIs

⇒ And parallel programming is not user friendly in general

How?
Embarrassingly Parallel computing helper

⇒ make parallel computing easy

How?
Embarrassingly Parallel computing helper

⇒ make parallel computing easy

Efficient disk caching to avoid recomputation

⇒ computation resource friendly

How?
Embarrassingly Parallel computing helper

⇒ make parallel computing easy

Efficient disk caching to avoid recomputation

⇒ computation resource friendly

Fast I/O persistence

⇒ limit cache access time

How?
Embarrassingly Parallel computing helper

⇒ make parallel computing easy

Efficient disk caching to avoid recomputation

⇒ computation resource friendly

Fast I/O persistence

⇒ limit cache access time

No dependencies, optimized for numpy arrays

⇒ simple installation and integration in other projects

Overview

Parallel helper
>>> from joblib import Parallel, delayed
>>> from math import sqrt

>>> Parallel(n_jobs=3, verbose=50)(delayed(sqrt)(i**2) for i in range(6))
[Parallel(n_jobs=3)]: Done 1 tasks | elapsed: 0.0s
[...]
[Parallel(n_jobs=3)]: Done 6 out of 6 | elapsed: 0.0s finished
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

Parallel helper
>>> from joblib import Parallel, delayed
>>> from math import sqrt

>>> Parallel(n_jobs=3, verbose=50)(delayed(sqrt)(i**2) for i in range(6))
[Parallel(n_jobs=3)]: Done 1 tasks | elapsed: 0.0s
[...]
[Parallel(n_jobs=3)]: Done 6 out of 6 | elapsed: 0.0s finished
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

⇒ API can be extended with external backends

Parallel backends
Single machine backends: works on a Laptop

⇒ threading, multiprocessing and soon Loky

Parallel backends
Single machine backends: works on a Laptop

⇒ threading, multiprocessing and soon Loky

Multi machine backends: available as optional extensions

⇒ distributed, ipyparallel, CMFActivity, Hadoop Yarn

Parallel backends
Single machine backends: works on a Laptop

⇒ threading, multiprocessing and soon Loky

Multi machine backends: available as optional extensions

⇒ distributed, ipyparallel, CMFActivity, Hadoop Yarn

>>> from distributed.joblib import DistributedBackend
>>> from joblib import (Parallel, delayed,
>>> register_parallel_backend, parallel_backend)

>>> register_parallel_backend('distributed', DistributedBackend)
>>> with parallel_backend('distributed', scheduler_host='dscheduler:8786'):
>>> Parallel(n_jobs=3)(delayed(sqrt)(i**2) for i in range(6))
[...]

Parallel backends
Single machine backends: works on a Laptop

⇒ threading, multiprocessing and soon Loky

Multi machine backends: available as optional extensions

⇒ distributed, ipyparallel, CMFActivity, Hadoop Yarn

>>> from distributed.joblib import DistributedBackend
>>> from joblib import (Parallel, delayed,
>>> register_parallel_backend, parallel_backend)

>>> register_parallel_backend('distributed', DistributedBackend)
>>> with parallel_backend('distributed', scheduler_host='dscheduler:8786'):
>>> Parallel(n_jobs=3)(delayed(sqrt)(i**2) for i in range(6))
[...]

Future: new backends for Celery, Spark

Caching on disk
Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np
>>> a = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir='/tmp/joblib')
>>> square = mem.cache(np.square)

Caching on disk
Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np
>>> a = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir='/tmp/joblib')
>>> square = mem.cache(np.square)

>>> b = square(a)
__
[Memory] Calling square...
square(array([[0., 0., 1.],
 [1., 1., 1.],
 [4., 2., 1.]]))
___square - 0...s, 0.0min

>>> c = square(a) # no recomputation
array([[0., 0., 1.],
[...]

Caching on disk
Use a memoize pattern with the Memory object

>>> from joblib import Memory
>>> import numpy as np
>>> a = np.vander(np.arange(3)).astype(np.float)

>>> mem = Memory(cachedir='/tmp/joblib')
>>> square = mem.cache(np.square)

>>> b = square(a)
__
[Memory] Calling square...
square(array([[0., 0., 1.],
 [1., 1., 1.],
 [4., 2., 1.]]))
___square - 0...s, 0.0min

>>> c = square(a) # no recomputation
array([[0., 0., 1.],
[...]

Least Recently Used (LRU) cache replacement policy

Persistence
Convert/create an arbitrary object into/from a string of bytes

Streamable persistence to/from file or socket objects

>>> import numpy as np
>>> import joblib
>>> obj = [('a', [1, 2, 3]), ('b', np.arange(10))]
>>> joblib.dump(obj, '/tmp/test.pkl')
['/tmp/test.pkl']
>>> with open('/tmp/test.pkl', 'rb') as f:
>>> joblib.load(f)
[('a', [1, 2, 3]), ('b', array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))]

Persistence
Convert/create an arbitrary object into/from a string of bytes

Streamable persistence to/from file or socket objects

>>> import numpy as np
>>> import joblib
>>> obj = [('a', [1, 2, 3]), ('b', np.arange(10))]
>>> joblib.dump(obj, '/tmp/test.pkl')
['/tmp/test.pkl']
>>> with open('/tmp/test.pkl', 'rb') as f:
>>> joblib.load(f)
[('a', [1, 2, 3]), ('b', array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))]

Use compression for fast I/O:
 support for zlib, gz, bz2, xz and lzma compressors

>>> joblib.dump(obj, '/tmp/test.pkl.gz', compress=True, cache_size=0)
['/tmp/test.pkl.gz']
>>> joblib.load('/tmp/test.pkl.gz')

Outline

Joblib in a word

⇒Joblib for cloud computing

Future work

The Cloud trend
Lots of Cloud providers on the market:

The Cloud trend
Lots of Cloud providers on the market:

Existing solutions for processing Big Data:

The Cloud trend
Lots of Cloud providers on the market:

Existing solutions for processing Big Data:

Existing container orchestration solutions: Docker SWARM, Kubernetes

The Cloud trend
Lots of Cloud providers on the market:

Existing solutions for processing Big Data:

Existing container orchestration solutions: Docker SWARM, Kubernetes

How can Joblib be used with them?

The general idea

Use pluggable multi-machine parallel backends
Principle: configure your backend and wrap the calls to Parallel

>>> import time
>>> import ipyparallel as ipp
>>> from ipyparallel.joblib import register as register_joblib
>>> from joblib import parallel_backend, Parallel, delayed

Setup ipyparallel backend
>>> register_joblib()
>>> dview = ipp.Client()[:]

Start the job
>>> with parallel_backend("ipyparallel", view=dview):
>>> Parallel(n_jobs=20, verbose=50)(delayed(time.sleep)(1) for i in range(10))

Use pluggable multi-machine parallel backends
Principle: configure your backend and wrap the calls to Parallel

>>> import time
>>> import ipyparallel as ipp
>>> from ipyparallel.joblib import register as register_joblib
>>> from joblib import parallel_backend, Parallel, delayed

Setup ipyparallel backend
>>> register_joblib()
>>> dview = ipp.Client()[:]

Start the job
>>> with parallel_backend("ipyparallel", view=dview):
>>> Parallel(n_jobs=20, verbose=50)(delayed(time.sleep)(1) for i in range(10))

Complete examples exist for:

Dask distributed: https://github.com/ogrisel/docker-distributed

Hadoop Yarn: https://github.com/joblib/joblib-hadoop

https://github.com/ogrisel/docker-distributed
https://github.com/joblib/joblib-hadoop

Use pluggable store backends
Extends Memory API with other store providers

Not available upstream yet:
⇒ PR opened at https://github.com/joblib/joblib/pull/397

https://github.com/joblib/joblib/pull/397

Use pluggable store backends
Extends Memory API with other store providers

Not available upstream yet:
⇒ PR opened at https://github.com/joblib/joblib/pull/397

>>> import numpy as np
>>> from joblib import Memory
>>> from joblibhadoop.hdfs import register_hdfs_store_backend

Register HDFS store backend provider
>>> register_hdfs_store_backend()
Persist data in hdfs://namenode:9000/user/john/cache/joblib
>>> mem = Memory(location='cache', backend='hdfs',
>>> host='namenode', port=9000, user='john', compress=True)
multiply = mem.cache(np.multiply)

https://github.com/joblib/joblib/pull/397

Use pluggable store backends
Extends Memory API with other store providers

Not available upstream yet:
⇒ PR opened at https://github.com/joblib/joblib/pull/397

>>> import numpy as np
>>> from joblib import Memory
>>> from joblibhadoop.hdfs import register_hdfs_store_backend

Register HDFS store backend provider
>>> register_hdfs_store_backend()
Persist data in hdfs://namenode:9000/user/john/cache/joblib
>>> mem = Memory(location='cache', backend='hdfs',
>>> host='namenode', port=9000, user='john', compress=True)
multiply = mem.cache(np.multiply)

Store backends available:

Amazon S3: https://github.com/aabadie/joblib-s3

Hadoop HDFS: https://github.com/joblib/joblib-hadoop

https://github.com/joblib/joblib/pull/397
https://github.com/aabadie/joblib-s3
https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib
joblib-hadoop package: https://github.com/joblib/joblib-hadoop

https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib
joblib-hadoop package: https://github.com/joblib/joblib-hadoop

Provides docker containers helpers for developing and testing

https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib
joblib-hadoop package: https://github.com/joblib/joblib-hadoop

Provides docker containers helpers for developing and testing

⇒ no need for a production Hadoop cluster

⇒ make developer life easier: CI on Travis is possible

⇒ local repository on host is shared with Joblib-hadoop-node container

https://github.com/joblib/joblib-hadoop

Using Hadoop with Joblib
joblib-hadoop package: https://github.com/joblib/joblib-hadoop

Provides docker containers helpers for developing and testing

⇒ no need for a production Hadoop cluster

⇒ make developer life easier: CI on Travis is possible

⇒ local repository on host is shared with Joblib-hadoop-node container

https://github.com/joblib/joblib-hadoop

Outline

Joblib in a word

Joblib for cloud computing

⇒Future work and conclusion

Future work
In-memory object caching

⇒ Should save RAM during a parallel job

Future work
In-memory object caching

⇒ Should save RAM during a parallel job

Allow overriding of parallel backends

⇒ See PR: https://github.com/joblib/joblib/pull/524

⇒ Seamless distributed computing in scikit-learn

https://github.com/joblib/joblib/pull/524

Future work
In-memory object caching

⇒ Should save RAM during a parallel job

Allow overriding of parallel backends

⇒ See PR: https://github.com/joblib/joblib/pull/524

⇒ Seamless distributed computing in scikit-learn

Replace multiprocessing parallel backend with Loky

⇒ See PR: https://github.com/joblib/joblib/pull/516

https://github.com/joblib/joblib/pull/524
https://github.com/joblib/joblib/pull/516

Future work
In-memory object caching

⇒ Should save RAM during a parallel job

Allow overriding of parallel backends

⇒ See PR: https://github.com/joblib/joblib/pull/524

⇒ Seamless distributed computing in scikit-learn

Replace multiprocessing parallel backend with Loky

⇒ See PR: https://github.com/joblib/joblib/pull/516

Extend Cloud providers support

⇒ Using Apache libcloud: give access to a lot more Cloud providers

https://github.com/joblib/joblib/pull/524
https://github.com/joblib/joblib/pull/516

Conclusion

Conclusion
Parallel helper is adapted to embarassingly parallel problems

Conclusion
Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

⇒ threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Conclusion
Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

⇒ threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Use caching techniques to avoid recomputation

Conclusion
Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

⇒ threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Use caching techniques to avoid recomputation

Extra Store backends available ⇒ HDFS (Hadoop) and AWS S3

Conclusion
Parallel helper is adapted to embarassingly parallel problems

Already a lot of parallel backends available

⇒ threading, multiprocessing, loky, CMFActivity distributed, ipyparallel, Yarn

Use caching techniques to avoid recomputation

Extra Store backends available ⇒ HDFS (Hadoop) and AWS S3

Use Joblib either on your laptop or in a Cloud with very few code changes

Thanks!

https://sed.saclay.inria.fr/
https://github.com/lesteve
https://github.com/GaelVaroquaux
https://github.com/ogrisel
http://www.scikit-learn.org/
http://www.criteo.com/
http://www.inria.fr/

